Measurement of DNA repair deficiency in workers exposed to benzene.

نویسندگان

  • L M Hallberg
  • R el Zein
  • L Grossman
  • W W Au
چکیده

We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m2 UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m2 and 350 J/m2 were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (< 0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

ارزیابی خطر نیمه کمی و کمی سلامت ناشی از مواجهه استنشاقی کارگران جایگاه‌های سوخت‌گیری شهر تهران با بنزن

Background and Objective: One of the air pollutants is volatile organic compounds (VOCs). Benzene, as a part of petrol, is a VOC, known to be carcinogenic to human beings (Group 1) and it has widespread application in  various industries and professions. Hence, the aim of the present study was semi-quantitative and quantitative health risk assessment of petrol bank workers exposure to benzene v...

متن کامل

بررسی میزان مواجهه با بنزن در کارگران پمپ بنزین از طریق ارزیابی محیطی و پایش شاخص زیستی

Background and objective: Benzene is one of the main pollutants in air and one of the most extensive chemical compound used in both natural and industrial processes. Benzene exposure leads to the most dangerous adverse health effects, particularly blood cancer. The aim of this study was to evaluate the gas station workers’ exposure to benzene by measuring benzene in breathing air and urinary tr...

متن کامل

Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity.

Benzene is an established human hematotoxicant and leukemogen but its mechanism of action is unclear. To investigate the role of single-nucleotide polymorphisms (SNPs) on benzene-induced hematotoxicity, we analyzed 1395 SNPs in 411 genes using an Illumina GoldenGate assay in 250 benzene-exposed workers and 140 unexposed controls. Highly significant findings clustered in five genes (BLM, TP53, R...

متن کامل

The effect of respiratory exposure to benzene, toluene, xylene and ethyl benzene on the spirometric indices among the petroleum products loading workers

Abstract Background and Aim: Benzene, toluene, xylene and ethyl benzene (BTEX) are the most important aromatic compounds in petroleum products. BTEX compounds due to their high vapor pressure, easily change to gas form and mixed with ambient air. Petroleum products loading workers are exposed to these compounds by the inhalation of BTEX compounds. The aim of this study was to evaluate the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1996